Cargando…
Calibrating predictive model estimates to support personalized medicine
OBJECTIVE: Predictive models that generate individualized estimates for medically relevant outcomes are playing increasing roles in clinical care and translational research. However, current methods for calibrating these estimates lose valuable information. Our goal is to develop a new calibration m...
Autores principales: | Jiang, Xiaoqian, Osl, Melanie, Kim, Jihoon, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277613/ https://www.ncbi.nlm.nih.gov/pubmed/21984587 http://dx.doi.org/10.1136/amiajnl-2011-000291 |
Ejemplares similares
-
Smooth Isotonic Regression: A New Method to Calibrate Predictive Models
por: Jiang, Xiaoqian, et al.
Publicado: (2011) -
A patient-driven adaptive prediction technique to improve personalized risk estimation for clinical decision support
por: Jiang, Xiaoqian, et al.
Publicado: (2012) -
I-spline Smoothing for Calibrating Predictive Models
por: Wu, Yuan, et al.
Publicado: (2012) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): An Algorithm for Joint Optimization of Discrimination and Calibration
por: Jiang, Xiaoqian, et al.
Publicado: (2012)