Cargando…

MIPHENO: data normalization for high throughput metabolite analysis

BACKGROUND: High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course of mont...

Descripción completa

Detalles Bibliográficos
Autores principales: Bell, Shannon M, Burgoon, Lyle D, Last, Robert L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278354/
https://www.ncbi.nlm.nih.gov/pubmed/22244038
http://dx.doi.org/10.1186/1471-2105-13-10
_version_ 1782223554658435072
author Bell, Shannon M
Burgoon, Lyle D
Last, Robert L
author_facet Bell, Shannon M
Burgoon, Lyle D
Last, Robert L
author_sort Bell, Shannon M
collection PubMed
description BACKGROUND: High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course of months and years, often without the controls needed to compare directly across the dataset. Few methods are available to facilitate comparisons of high throughput metabolic data generated in batches where explicit in-group controls for normalization are lacking. RESULTS: Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization), an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening. Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of population parameters (p < 2.2 × 10(-16)) and a modest but significant (p < 2.2 × 10(-16)) improvement in area under the receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score). Analysis of the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/) showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based statistic. CONCLUSIONS: Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range of high throughput screenings and the code is freely available as Additional file 1 as well as through an R package in CRAN.
format Online
Article
Text
id pubmed-3278354
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32783542012-02-14 MIPHENO: data normalization for high throughput metabolite analysis Bell, Shannon M Burgoon, Lyle D Last, Robert L BMC Bioinformatics Methodology Article BACKGROUND: High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course of months and years, often without the controls needed to compare directly across the dataset. Few methods are available to facilitate comparisons of high throughput metabolic data generated in batches where explicit in-group controls for normalization are lacking. RESULTS: Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization), an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening. Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of population parameters (p < 2.2 × 10(-16)) and a modest but significant (p < 2.2 × 10(-16)) improvement in area under the receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score). Analysis of the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/) showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based statistic. CONCLUSIONS: Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range of high throughput screenings and the code is freely available as Additional file 1 as well as through an R package in CRAN. BioMed Central 2012-01-13 /pmc/articles/PMC3278354/ /pubmed/22244038 http://dx.doi.org/10.1186/1471-2105-13-10 Text en Copyright ©2012 Bell et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Bell, Shannon M
Burgoon, Lyle D
Last, Robert L
MIPHENO: data normalization for high throughput metabolite analysis
title MIPHENO: data normalization for high throughput metabolite analysis
title_full MIPHENO: data normalization for high throughput metabolite analysis
title_fullStr MIPHENO: data normalization for high throughput metabolite analysis
title_full_unstemmed MIPHENO: data normalization for high throughput metabolite analysis
title_short MIPHENO: data normalization for high throughput metabolite analysis
title_sort mipheno: data normalization for high throughput metabolite analysis
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278354/
https://www.ncbi.nlm.nih.gov/pubmed/22244038
http://dx.doi.org/10.1186/1471-2105-13-10
work_keys_str_mv AT bellshannonm miphenodatanormalizationforhighthroughputmetaboliteanalysis
AT burgoonlyled miphenodatanormalizationforhighthroughputmetaboliteanalysis
AT lastrobertl miphenodatanormalizationforhighthroughputmetaboliteanalysis