Cargando…

Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

BACKGROUND: For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Feifel, Sven C, Lisdat, Fred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278367/
https://www.ncbi.nlm.nih.gov/pubmed/22208693
http://dx.doi.org/10.1186/1477-3155-9-59
_version_ 1782223557632196608
author Feifel, Sven C
Lisdat, Fred
author_facet Feifel, Sven C
Lisdat, Fred
author_sort Feifel, Sven C
collection PubMed
description BACKGROUND: For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. RESULTS: We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm(2 )with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are discussed. CONCLUSIONS: This study demonstrates the ability to construct fully electro-active cyt c multilayer assemblies by using carboxy-modified silica nanoparticles. Thus it can be shown that functional, artificial systems can be build up following natural examples of protein arrangements. The absence of any conductive properties in the second building block clearly demonstrates that mechanisms for electron transfer through such protein multilayer assemblies is based on interprotein electron exchange, rather than on wiring of the protein to the electrode. The construction strategy of this multilayer system provides a new controllable route to immobilize proteins in multiple layers featuring direct electrochemistry without mediating shuttle molecules and controlling the electro-active amount by the number of deposition steps.
format Online
Article
Text
id pubmed-3278367
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32783672012-02-14 Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers Feifel, Sven C Lisdat, Fred J Nanobiotechnology Research BACKGROUND: For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. RESULTS: We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm(2 )with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are discussed. CONCLUSIONS: This study demonstrates the ability to construct fully electro-active cyt c multilayer assemblies by using carboxy-modified silica nanoparticles. Thus it can be shown that functional, artificial systems can be build up following natural examples of protein arrangements. The absence of any conductive properties in the second building block clearly demonstrates that mechanisms for electron transfer through such protein multilayer assemblies is based on interprotein electron exchange, rather than on wiring of the protein to the electrode. The construction strategy of this multilayer system provides a new controllable route to immobilize proteins in multiple layers featuring direct electrochemistry without mediating shuttle molecules and controlling the electro-active amount by the number of deposition steps. BioMed Central 2011-12-30 /pmc/articles/PMC3278367/ /pubmed/22208693 http://dx.doi.org/10.1186/1477-3155-9-59 Text en Copyright ©2011 Feifel and Lisdat; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Feifel, Sven C
Lisdat, Fred
Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title_full Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title_fullStr Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title_full_unstemmed Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title_short Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
title_sort silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278367/
https://www.ncbi.nlm.nih.gov/pubmed/22208693
http://dx.doi.org/10.1186/1477-3155-9-59
work_keys_str_mv AT feifelsvenc silicananoparticlesforthelayerbylayerassemblyoffullyelectroactivecytochromecmultilayers
AT lisdatfred silicananoparticlesforthelayerbylayerassemblyoffullyelectroactivecytochromecmultilayers