Cargando…
Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility
Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278431/ https://www.ncbi.nlm.nih.gov/pubmed/22348067 http://dx.doi.org/10.1371/journal.pone.0031301 |
_version_ | 1782223571432505344 |
---|---|
author | Perez-Losada, Jesus Wu, Di DelRosario, Reyno Balmain, Allan Mao, Jian-Hua |
author_facet | Perez-Losada, Jesus Wu, Di DelRosario, Reyno Balmain, Allan Mao, Jian-Hua |
author_sort | Perez-Losada, Jesus |
collection | PubMed |
description | Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility. |
format | Online Article Text |
id | pubmed-3278431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32784312012-02-17 Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility Perez-Losada, Jesus Wu, Di DelRosario, Reyno Balmain, Allan Mao, Jian-Hua PLoS One Research Article Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility. Public Library of Science 2012-02-13 /pmc/articles/PMC3278431/ /pubmed/22348067 http://dx.doi.org/10.1371/journal.pone.0031301 Text en Perez-Losada et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Perez-Losada, Jesus Wu, Di DelRosario, Reyno Balmain, Allan Mao, Jian-Hua Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title | Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title_full | Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title_fullStr | Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title_full_unstemmed | Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title_short | Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility |
title_sort | allele-specific deletions in mouse tumors identify fbxw7 as germline modifier of tumor susceptibility |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278431/ https://www.ncbi.nlm.nih.gov/pubmed/22348067 http://dx.doi.org/10.1371/journal.pone.0031301 |
work_keys_str_mv | AT perezlosadajesus allelespecificdeletionsinmousetumorsidentifyfbxw7asgermlinemodifieroftumorsusceptibility AT wudi allelespecificdeletionsinmousetumorsidentifyfbxw7asgermlinemodifieroftumorsusceptibility AT delrosarioreyno allelespecificdeletionsinmousetumorsidentifyfbxw7asgermlinemodifieroftumorsusceptibility AT balmainallan allelespecificdeletionsinmousetumorsidentifyfbxw7asgermlinemodifieroftumorsusceptibility AT maojianhua allelespecificdeletionsinmousetumorsidentifyfbxw7asgermlinemodifieroftumorsusceptibility |