Cargando…

Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells

BACKGROUND: Angiogenesis plays an important role in many physiological and pathological processes. Identification of small molecules that block angiogenesis and are safe and affordable has been a challenge in drug development. Hypericum attenuatum Choisy is a Chinese herb medicine commonly used for...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Chen, Wu, Menghua, Dong, Jianyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278463/
https://www.ncbi.nlm.nih.gov/pubmed/22348123
http://dx.doi.org/10.1371/journal.pone.0031708
_version_ 1782223578765197312
author Lin, Chen
Wu, Menghua
Dong, Jianyong
author_facet Lin, Chen
Wu, Menghua
Dong, Jianyong
author_sort Lin, Chen
collection PubMed
description BACKGROUND: Angiogenesis plays an important role in many physiological and pathological processes. Identification of small molecules that block angiogenesis and are safe and affordable has been a challenge in drug development. Hypericum attenuatum Choisy is a Chinese herb medicine commonly used for treating hemorrhagic diseases. The present study investigates the anti-angiogenic effects of quercetin-4′-O-β-D-glucopyranoside (QODG), a flavonoid isolated from Hypericum attenuatum Choisy, in vivo and in vitro, and clarifies the underlying mechanism of the activity. METHODOLOGY/PRINCIPAL FINDINGS: Tg(fli1:EGFP) transgenic zebrafish embryos were treated with different concentrations of quercetin-4′-O-β-D-glucopyranoside (QODG) (20, 60, 180 µM) from 6 hours post fertilisation (hpf) to 72 hpf, and adult zebrafish were allowed to recover in different concentrations of QODG (20, 60, 180 µM) for 7 days post amputation (dpa) prior morphological observation and angiogenesis phenotypes assessment. Human umbilical vein endothelial cells (HUVECs) were treated with or without VEGF and different concentrations of QODG (5, 20, 60, 180 µM), then tested for cell viability, cell migration, tube formation and apoptosis. The role of VEGFR2-mediated signaling pathway in QODG-inhibited angiogenesis was evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting. CONCLUSION/SIGNIFICANCE: Quercetin-4′-O-β-D-glucopyranoside (QODG) was shown to inhibit angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish in vivo via suppressing VEGF-induced phosphorylation of VEGFR2. Our results further indicate that QODG inhibits angiogenesis via inhibition of VEGFR2-mediated signaling with the involvement of some key kinases such as c-Src, FAK, ERK, AKT, mTOR and S6K and induction of apoptosis. Together, this study reveals, for the first time, that QODG acts as a potent VEGFR2 kinase inhibitor, and exerts the anti-angiogenic activity at least in part through VEGFR2-mediated signaling pathway.
format Online
Article
Text
id pubmed-3278463
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32784632012-02-17 Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells Lin, Chen Wu, Menghua Dong, Jianyong PLoS One Research Article BACKGROUND: Angiogenesis plays an important role in many physiological and pathological processes. Identification of small molecules that block angiogenesis and are safe and affordable has been a challenge in drug development. Hypericum attenuatum Choisy is a Chinese herb medicine commonly used for treating hemorrhagic diseases. The present study investigates the anti-angiogenic effects of quercetin-4′-O-β-D-glucopyranoside (QODG), a flavonoid isolated from Hypericum attenuatum Choisy, in vivo and in vitro, and clarifies the underlying mechanism of the activity. METHODOLOGY/PRINCIPAL FINDINGS: Tg(fli1:EGFP) transgenic zebrafish embryos were treated with different concentrations of quercetin-4′-O-β-D-glucopyranoside (QODG) (20, 60, 180 µM) from 6 hours post fertilisation (hpf) to 72 hpf, and adult zebrafish were allowed to recover in different concentrations of QODG (20, 60, 180 µM) for 7 days post amputation (dpa) prior morphological observation and angiogenesis phenotypes assessment. Human umbilical vein endothelial cells (HUVECs) were treated with or without VEGF and different concentrations of QODG (5, 20, 60, 180 µM), then tested for cell viability, cell migration, tube formation and apoptosis. The role of VEGFR2-mediated signaling pathway in QODG-inhibited angiogenesis was evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting. CONCLUSION/SIGNIFICANCE: Quercetin-4′-O-β-D-glucopyranoside (QODG) was shown to inhibit angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish in vivo via suppressing VEGF-induced phosphorylation of VEGFR2. Our results further indicate that QODG inhibits angiogenesis via inhibition of VEGFR2-mediated signaling with the involvement of some key kinases such as c-Src, FAK, ERK, AKT, mTOR and S6K and induction of apoptosis. Together, this study reveals, for the first time, that QODG acts as a potent VEGFR2 kinase inhibitor, and exerts the anti-angiogenic activity at least in part through VEGFR2-mediated signaling pathway. Public Library of Science 2012-02-13 /pmc/articles/PMC3278463/ /pubmed/22348123 http://dx.doi.org/10.1371/journal.pone.0031708 Text en Lin et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lin, Chen
Wu, Menghua
Dong, Jianyong
Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title_full Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title_fullStr Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title_full_unstemmed Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title_short Quercetin-4′-O-β-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells
title_sort quercetin-4′-o-β-d-glucopyranoside (qodg) inhibits angiogenesis by suppressing vegfr2-mediated signaling in zebrafish and endothelial cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278463/
https://www.ncbi.nlm.nih.gov/pubmed/22348123
http://dx.doi.org/10.1371/journal.pone.0031708
work_keys_str_mv AT linchen quercetin4obdglucopyranosideqodginhibitsangiogenesisbysuppressingvegfr2mediatedsignalinginzebrafishandendothelialcells
AT wumenghua quercetin4obdglucopyranosideqodginhibitsangiogenesisbysuppressingvegfr2mediatedsignalinginzebrafishandendothelialcells
AT dongjianyong quercetin4obdglucopyranosideqodginhibitsangiogenesisbysuppressingvegfr2mediatedsignalinginzebrafishandendothelialcells