Cargando…
Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
BACKGROUND: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for clustering gene expression patterns from DNA microarray experiments, as it efficiently...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278848/ https://www.ncbi.nlm.nih.gov/pubmed/22373334 http://dx.doi.org/10.1186/1471-2105-12-S13-S8 |
_version_ | 1782223615662489600 |
---|---|
author | Kim, Mi Hyeon Seo, Hwa Jeong Joung, Je-Gun Kim, Ju Han |
author_facet | Kim, Mi Hyeon Seo, Hwa Jeong Joung, Je-Gun Kim, Ju Han |
author_sort | Kim, Mi Hyeon |
collection | PubMed |
description | BACKGROUND: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for clustering gene expression patterns from DNA microarray experiments, as it efficiently reduces the dimension of gene expression data. Although several MF methods have been proposed for clustering gene expression patterns, a systematic evaluation has not been reported yet. RESULTS: Here we evaluated the clustering performance of orthogonal and non-orthogonal MFs by a total of nine measurements for performance in four gene expression datasets and one well-known dataset for clustering. Specifically, we employed a non-orthogonal MF algorithm, BSNMF (Bi-directional Sparse Non-negative Matrix Factorization), that applies bi-directional sparseness constraints superimposed on non-negative constraints, comprising a few dominantly co-expressed genes and samples together. Non-orthogonal MFs tended to show better clustering-quality and prediction-accuracy indices than orthogonal MFs as well as a traditional method, K-means. Moreover, BSNMF showed improved performance in these measurements. Non-orthogonal MFs including BSNMF showed also good performance in the functional enrichment test using Gene Ontology terms and biological pathways. CONCLUSIONS: In conclusion, the clustering performance of orthogonal and non-orthogonal MFs was appropriately evaluated for clustering microarray data by comprehensive measurements. This study showed that non-orthogonal MFs have better performance than orthogonal MFs and K-means for clustering microarray data. |
format | Online Article Text |
id | pubmed-3278848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32788482012-02-14 Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data Kim, Mi Hyeon Seo, Hwa Jeong Joung, Je-Gun Kim, Ju Han BMC Bioinformatics Proceedings BACKGROUND: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for clustering gene expression patterns from DNA microarray experiments, as it efficiently reduces the dimension of gene expression data. Although several MF methods have been proposed for clustering gene expression patterns, a systematic evaluation has not been reported yet. RESULTS: Here we evaluated the clustering performance of orthogonal and non-orthogonal MFs by a total of nine measurements for performance in four gene expression datasets and one well-known dataset for clustering. Specifically, we employed a non-orthogonal MF algorithm, BSNMF (Bi-directional Sparse Non-negative Matrix Factorization), that applies bi-directional sparseness constraints superimposed on non-negative constraints, comprising a few dominantly co-expressed genes and samples together. Non-orthogonal MFs tended to show better clustering-quality and prediction-accuracy indices than orthogonal MFs as well as a traditional method, K-means. Moreover, BSNMF showed improved performance in these measurements. Non-orthogonal MFs including BSNMF showed also good performance in the functional enrichment test using Gene Ontology terms and biological pathways. CONCLUSIONS: In conclusion, the clustering performance of orthogonal and non-orthogonal MFs was appropriately evaluated for clustering microarray data by comprehensive measurements. This study showed that non-orthogonal MFs have better performance than orthogonal MFs and K-means for clustering microarray data. BioMed Central 2011-11-30 /pmc/articles/PMC3278848/ /pubmed/22373334 http://dx.doi.org/10.1186/1471-2105-12-S13-S8 Text en Copyright ©2011 Kim et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Kim, Mi Hyeon Seo, Hwa Jeong Joung, Je-Gun Kim, Ju Han Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title_full | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title_fullStr | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title_full_unstemmed | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title_short | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data |
title_sort | comprehensive evaluation of matrix factorization methods for the analysis of dna microarray gene expression data |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278848/ https://www.ncbi.nlm.nih.gov/pubmed/22373334 http://dx.doi.org/10.1186/1471-2105-12-S13-S8 |
work_keys_str_mv | AT kimmihyeon comprehensiveevaluationofmatrixfactorizationmethodsfortheanalysisofdnamicroarraygeneexpressiondata AT seohwajeong comprehensiveevaluationofmatrixfactorizationmethodsfortheanalysisofdnamicroarraygeneexpressiondata AT joungjegun comprehensiveevaluationofmatrixfactorizationmethodsfortheanalysisofdnamicroarraygeneexpressiondata AT kimjuhan comprehensiveevaluationofmatrixfactorizationmethodsfortheanalysisofdnamicroarraygeneexpressiondata |