Cargando…
Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
BACKGROUND: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for clustering gene expression patterns from DNA microarray experiments, as it efficiently...
Autores principales: | Kim, Mi Hyeon, Seo, Hwa Jeong, Joung, Je-Gun, Kim, Ju Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278848/ https://www.ncbi.nlm.nih.gov/pubmed/22373334 http://dx.doi.org/10.1186/1471-2105-12-S13-S8 |
Ejemplares similares
-
Extracting regulatory modules from gene expression data by sequential pattern mining
por: Kim, Mingoo, et al.
Publicado: (2011) -
Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data
por: Kong, Wei, et al.
Publicado: (2011) -
Identification of cell cycle-related regulatory motifs using a kernel canonical correlation analysis
por: Rhee, Je-Keun, et al.
Publicado: (2009) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007) -
A probabilistic coevolutionary biclustering algorithm for discovering coherent patterns in gene expression dataset
por: Joung, Je-Gun, et al.
Publicado: (2012)