Cargando…
Statistical Approach for Optimization of Physiochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042
The optimization of physiochemical parameters for alkaline protease production using Bacillus licheniformis NCIM 2042 were carried out by Plackett-Burman design and response surface methodology (RSM). The model was validated experimentally and the maximum protease production was found 315.28 U using...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278927/ https://www.ncbi.nlm.nih.gov/pubmed/22347624 http://dx.doi.org/10.1155/2012/905804 |
Sumario: | The optimization of physiochemical parameters for alkaline protease production using Bacillus licheniformis NCIM 2042 were carried out by Plackett-Burman design and response surface methodology (RSM). The model was validated experimentally and the maximum protease production was found 315.28 U using optimum culture conditions. The protease was purified using ammonium sulphate (60%) precipitation technique. The HPLC analysis of dialyzed sample showed that the retention time is 1.84 min with 73.5% purity. This enzyme retained more than 92% of its initial activity after preincubation for 30 min at 37°C in the presence of 25% v/v DMSO, methanol, ethanol, ACN, 2-propanol, benzene, toluene, and hexane. In addition, partially purified enzyme showed remarkable stability for 60 min at room temperature, in the presence of anionic detergent (Tween-80 and Triton X-100), surfactant (SDS), bleaching agent (sodium perborate and hydrogen peroxide), and anti-redeposition agents (Na(2)CMC, Na(2)CO(3)). Purified enzyme containing 10% w/v PEG 4000 showed better thermal, surfactant, and local detergent stability. |
---|