Cargando…
Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis
BACKGROUND AND AIMS: We have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Informa Healthcare
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279140/ https://www.ncbi.nlm.nih.gov/pubmed/21954836 http://dx.doi.org/10.3109/14653249.2011.613930 |
_version_ | 1782223639698997248 |
---|---|
author | Cargnoni, Anna Ressel, Lorenzo Rossi, Daniele Poli, Alessandro Arienti, Davide Lombardi, Guerino Parolini, Ornella |
author_facet | Cargnoni, Anna Ressel, Lorenzo Rossi, Daniele Poli, Alessandro Arienti, Davide Lombardi, Guerino Parolini, Ornella |
author_sort | Cargnoni, Anna |
collection | PubMed |
description | BACKGROUND AND AIMS: We have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immunomodulatory and trophic activities, we hypothesized that transplanted cells may promote lung tissue repair via paracrine-acting molecules. To test this hypothesis, we examined whether administration of conditioned medium (CM) generated from human amniotic mesenchymal tissue cells (AMTC) was able to reduce lung fibrosis in this same animal model. METHODS: Bleomycin-challenged mice were either treated with AMTC-CM or control medium, or were left untreated (Bleo group). After 9 and 14 days, the distribution and severity of lung fibrosis were assessed histologically with a scoring system. Collagen deposition was also evaluated by quantitative image analysis. RESULTS: At day 14, lung fibrosis scores in AMTC-CM-treated mice were significantly lower (P<0.05) compared with mice of the Bleo group, in terms of fibrosis distribution [1.0 (interquartile range, IQR 0.9) versus 3.0 (IQR 1.8)], fibroblast proliferation [0.8 (IQR 0.4) versus 1.6 (IQR 1.0)], collagen deposition [1.4 (IQR 0.5) versus 2.0 (IQR 1.2)] and alveolar obliteration [2.3 (IQR 0.8) versus 3.2 (IQR 0.5)]. No differences were observed between mice of the Bleo group and mice treated with control medium. Quantitative analysis of collagen deposition confirmed these findings. Importantly, AMTC-CM treatment significantly reduced the fibrosis progression between the two observation time-points. CONCLUSIONS: This pilot study supports the notion that AMTC exert anti-fibrotic effects through release of yet unknown soluble factors. |
format | Online Article Text |
id | pubmed-3279140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Informa Healthcare |
record_format | MEDLINE/PubMed |
spelling | pubmed-32791402012-02-23 Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis Cargnoni, Anna Ressel, Lorenzo Rossi, Daniele Poli, Alessandro Arienti, Davide Lombardi, Guerino Parolini, Ornella Cytotherapy Article BACKGROUND AND AIMS: We have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immunomodulatory and trophic activities, we hypothesized that transplanted cells may promote lung tissue repair via paracrine-acting molecules. To test this hypothesis, we examined whether administration of conditioned medium (CM) generated from human amniotic mesenchymal tissue cells (AMTC) was able to reduce lung fibrosis in this same animal model. METHODS: Bleomycin-challenged mice were either treated with AMTC-CM or control medium, or were left untreated (Bleo group). After 9 and 14 days, the distribution and severity of lung fibrosis were assessed histologically with a scoring system. Collagen deposition was also evaluated by quantitative image analysis. RESULTS: At day 14, lung fibrosis scores in AMTC-CM-treated mice were significantly lower (P<0.05) compared with mice of the Bleo group, in terms of fibrosis distribution [1.0 (interquartile range, IQR 0.9) versus 3.0 (IQR 1.8)], fibroblast proliferation [0.8 (IQR 0.4) versus 1.6 (IQR 1.0)], collagen deposition [1.4 (IQR 0.5) versus 2.0 (IQR 1.2)] and alveolar obliteration [2.3 (IQR 0.8) versus 3.2 (IQR 0.5)]. No differences were observed between mice of the Bleo group and mice treated with control medium. Quantitative analysis of collagen deposition confirmed these findings. Importantly, AMTC-CM treatment significantly reduced the fibrosis progression between the two observation time-points. CONCLUSIONS: This pilot study supports the notion that AMTC exert anti-fibrotic effects through release of yet unknown soluble factors. Informa Healthcare 2012-02 2011-09-28 /pmc/articles/PMC3279140/ /pubmed/21954836 http://dx.doi.org/10.3109/14653249.2011.613930 Text en © 2012 Informa Healthcare http://creativecommons.org/licenses/by/2.0/ This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Informa Healthcare journals (http://www.informaworld.com/mpp/uploads/iopenaccess_tcs.pdf) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Cargnoni, Anna Ressel, Lorenzo Rossi, Daniele Poli, Alessandro Arienti, Davide Lombardi, Guerino Parolini, Ornella Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title | Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title_full | Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title_fullStr | Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title_full_unstemmed | Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title_short | Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
title_sort | conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279140/ https://www.ncbi.nlm.nih.gov/pubmed/21954836 http://dx.doi.org/10.3109/14653249.2011.613930 |
work_keys_str_mv | AT cargnonianna conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT ressellorenzo conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT rossidaniele conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT polialessandro conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT arientidavide conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT lombardiguerino conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis AT paroliniornella conditionedmediumfromamnioticmesenchymaltissuecellsreducesprogressionofbleomycininducedlungfibrosis |