Cargando…
Random KNN feature selection - a fast and stable alternative to Random Forests
BACKGROUND: Successfully modeling high-dimensional data involving thousands of variables is challenging. This is especially true for gene expression profiling experiments, given the large number of genes involved and the small number of samples available. Random Forests (RF) is a popular and widely...
Autores principales: | Li, Shengqiao, Harner, E James, Adjeroh, Donald A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281073/ https://www.ncbi.nlm.nih.gov/pubmed/22093447 http://dx.doi.org/10.1186/1471-2105-12-450 |
Ejemplares similares
-
BS-KNN: An Effective Algorithm for Predicting Protein Subchloroplast Localization
por: Hu, Jing, et al.
Publicado: (2012) -
SRIQ clustering: A fusion of Random Forest, QT clustering, and KNN concepts
por: Karlström, Jacob, et al.
Publicado: (2022) -
r2VIM: A new variable selection method for random forests in genome-wide association studies
por: Szymczak, Silke, et al.
Publicado: (2016) -
Comparison of kNN and k-means optimization methods of reference set selection for improved CNV callers performance
por: Kuśmirek, Wiktor, et al.
Publicado: (2019) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006)