Cargando…
Mitochondrial calcium homeostasis as potential target for mitochondrial medicine
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca(2...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281195/ https://www.ncbi.nlm.nih.gov/pubmed/21798374 http://dx.doi.org/10.1016/j.mito.2011.07.004 |
Sumario: | Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca(2+)) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca(2+) homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca(2+) traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies. |
---|