Cargando…

Sample Reproducibility of Genetic Association Using Different Multimarker TDTs in Genome-Wide Association Studies: Characterization and a New Approach

Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associ...

Descripción completa

Detalles Bibliográficos
Autores principales: Abad-Grau, Mara M., Medina-Medina, Nuria, Montes-Soldado, Rosana, Matesanz, Fuencisla, Bafna, Vineet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281822/
https://www.ncbi.nlm.nih.gov/pubmed/22363405
http://dx.doi.org/10.1371/journal.pone.0029613
Descripción
Sumario:Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker [Image: see text] -Groups TDT ( [Image: see text] ), a test which under the hypothesis of no linkage, asymptotically follows a [Image: see text] distribution with [Image: see text] degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that [Image: see text] test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, [Image: see text] turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases.