Cargando…

The Obesity and Fatty Liver Are Reduced by Plant-Derived Pediococcus pentosaceus LP28 in High Fat Diet-Induced Obese Mice

We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28), on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each grou...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xingrong, Higashikawa, Fumiko, Noda, Masafumi, Kawamura, Yusuke, Matoba, Yasuyuki, Kumagai, Takanori, Sugiyama, Masanori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281851/
https://www.ncbi.nlm.nih.gov/pubmed/22363472
http://dx.doi.org/10.1371/journal.pone.0030696
Descripción
Sumario:We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28), on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each group was further divided into 3 groups, which took LP28, another plant-derived Lactobacillus plantarum SN13T (SN13T) or no lactic acid bacteria (LAB). The lean control mice were fed a regular diet without inducing obesity prior to the experiment. LP28 reduced body weight gain and liver lipid contents (triglyceride and cholesterol), in mice fed a high fat diet for 8 weeks (40%, 54%, and 70% less than those of the control group without LAB, and P = 0.018, P<0.001, and P = 0.021, respectively), whereas SN13T and the heat treated LP28 at 121°C for 15 min were ineffective. Abdominal visceral fat in the high fat diet mice fed with LP28 was also lower than that without LAB by 44%, although it was not significant but borderline (P = 0.076). The sizes of the adipocytes and the lipid droplets in the livers were obviously decreased. A real-time PCR analyses showed that lipid metabolism-related genes, such as CD36 (P = 0.013), SCD1 encoding stearoyl-CoA desaturase 1 (not significant but borderline, P = 0.066), and PPARγ encoding peroxisome proliferator-activated receptor gamma (P = 0.039), were down-regulated by taking LP28 continuously, when compared with those of the control group. In conclusion, LP28 may be a useful LAB strain for the prevention and reduction of the metabolic syndrome.