Cargando…

Activation of the AMP-Activated Protein Kinase (AMPK) by Nitrated Lipids in Endothelial Cells

The AMP-activated protein kinase (AMPK) is an important regulator of endothelial metabolic and functional homeostasis. Here, we examined the regulation of AMPK by nitrated oleic acid (OA-NO(2)) and investigated the implications in endothelial function. Treatment of bovine aortic endothelial cells (B...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yong, Dong, Yunzhou, Song, Ping, Zou, Ming-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281919/
https://www.ncbi.nlm.nih.gov/pubmed/22363546
http://dx.doi.org/10.1371/journal.pone.0031056
Descripción
Sumario:The AMP-activated protein kinase (AMPK) is an important regulator of endothelial metabolic and functional homeostasis. Here, we examined the regulation of AMPK by nitrated oleic acid (OA-NO(2)) and investigated the implications in endothelial function. Treatment of bovine aortic endothelial cells (BAECs) with OA-NO(2) induced a significant increase in both AMPK-Thr172 phosphorylation and AMPK activity as well as upregulation of heme oxygenase (HO)-1 and hypoxia-inducible factor (HIF)-1α. Pharmacologic inhibition or genetic ablation of HO-1 or HIF-1α abolished OA-NO(2)-induced AMPK phosphorylation. OA-NO(2) induced a dramatic increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation that was abrogated by the HO-1 inhibitor, zinc deuteroporphyrin IX 2,4-bis-ethylene glycol (ZnBG). Inhibition of ERK1/2 using UO126 or PD98059 reduced but did not abolish OA-NO(2)-induced HIF-1α upregulation, suggesting that OA-NO(2)/HO-1-initiated HIF-1α induction is partially dependent on ERK1/2 activity. In addition, OA-NO(2) enhanced endothelial intracellular Ca(2+), an effect that was inhibited by the HIF-1α inhibitor, YC-1, and by HIF-1α siRNA. These results implicate the involvement of HIF-1α. Experiments using the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609, the selective CaMKII inhibitor KN-93, and an isoform-specific siRNA demonstrated that OA-NO(2)-induced AMPK phosphorylation was dependent on CaMKKβ. Together, these results demonstrate that OA-NO(2) activates AMPK in endothelial cells via an HO-1–dependent mechanism that increases HIF-1α protein expression and Ca(2+)/CaMKKβ activation.