Cargando…
Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy
Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabeti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PAGEPress Publications
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282438/ https://www.ncbi.nlm.nih.gov/pubmed/22355488 http://dx.doi.org/10.4081/hi.2011.e21 |
_version_ | 1782224068731207680 |
---|---|
author | Wang, Guoguang Li, Wei Lu, Xiaohua Zhao, Xue |
author_facet | Wang, Guoguang Li, Wei Lu, Xiaohua Zhao, Xue |
author_sort | Wang, Guoguang |
collection | PubMed |
description | Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabetic heart diseases. Riboflavin constitutes an essential nutrient for humans and animals and it is an important food additive. Riboflavin, a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), enhances the oxidative folding and subsequent secretion of proteins. The objective of this study was to investigate the cardioprotective effect of riboflavin in diabetic rats. Diabetes was induced in 30 rats by a single injection of streptozotocin (STZ) (70 mg /kg). Riboflavin (20 mg/kg) was orally administered to animals immediately after induction of diabetes and was continued for eight weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) remadynamic function. Myocardial oxidative stress was assessed by measuring the activity of superoxide dismutase (SOD), the level of malondialdehyde (MDA) as well as heme oxygenase-1 (HO-1) protein level. Myocardial connective tissue growth factor (CTGF) level was measured by Western blot in all rats at the end of the study. In the untreated diabetic rats, left ventricular systolic pressure (LVSP) rate of pressure rose (+dp/dt), and rate of pressure decay (−dp/dt) were depressed while left ventricular end-diastolic pressure (LVEDP) was increased, which indicated the reduced left ventricular contractility and slowing of left ventricular relaxation. The level of SOD decreased, CTGF and HO-1 protein expression and MDA content rose. Riboflavin treatment significantly improved left ventricular systolic and diastolic function in diabetic rats, there were persistent increases in significant activation of SOD and the level of HO-1 protein, and a decrease in the level of CTGF. These results suggest that riboflavin treatment ameliorates myocardial function and improves heart oxidant status, whereas raising myocardial HO-1 and decreasing myocardial CTGF levels have beneficial effects on diabetic cardiomyopathy. |
format | Online Article Text |
id | pubmed-3282438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | PAGEPress Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-32824382012-02-21 Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy Wang, Guoguang Li, Wei Lu, Xiaohua Zhao, Xue Heart Int Clinical Investigation Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabetic heart diseases. Riboflavin constitutes an essential nutrient for humans and animals and it is an important food additive. Riboflavin, a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), enhances the oxidative folding and subsequent secretion of proteins. The objective of this study was to investigate the cardioprotective effect of riboflavin in diabetic rats. Diabetes was induced in 30 rats by a single injection of streptozotocin (STZ) (70 mg /kg). Riboflavin (20 mg/kg) was orally administered to animals immediately after induction of diabetes and was continued for eight weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) remadynamic function. Myocardial oxidative stress was assessed by measuring the activity of superoxide dismutase (SOD), the level of malondialdehyde (MDA) as well as heme oxygenase-1 (HO-1) protein level. Myocardial connective tissue growth factor (CTGF) level was measured by Western blot in all rats at the end of the study. In the untreated diabetic rats, left ventricular systolic pressure (LVSP) rate of pressure rose (+dp/dt), and rate of pressure decay (−dp/dt) were depressed while left ventricular end-diastolic pressure (LVEDP) was increased, which indicated the reduced left ventricular contractility and slowing of left ventricular relaxation. The level of SOD decreased, CTGF and HO-1 protein expression and MDA content rose. Riboflavin treatment significantly improved left ventricular systolic and diastolic function in diabetic rats, there were persistent increases in significant activation of SOD and the level of HO-1 protein, and a decrease in the level of CTGF. These results suggest that riboflavin treatment ameliorates myocardial function and improves heart oxidant status, whereas raising myocardial HO-1 and decreasing myocardial CTGF levels have beneficial effects on diabetic cardiomyopathy. PAGEPress Publications 2011-11-22 /pmc/articles/PMC3282438/ /pubmed/22355488 http://dx.doi.org/10.4081/hi.2011.e21 Text en ©Copyright G. Wang et al., 2011 This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0). Licensee PAGEPress, Italy |
spellingShingle | Clinical Investigation Wang, Guoguang Li, Wei Lu, Xiaohua Zhao, Xue Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title | Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title_full | Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title_fullStr | Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title_full_unstemmed | Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title_short | Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy |
title_sort | riboflavin alleviates cardiac failure in type i diabetic cardiomyopathy |
topic | Clinical Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282438/ https://www.ncbi.nlm.nih.gov/pubmed/22355488 http://dx.doi.org/10.4081/hi.2011.e21 |
work_keys_str_mv | AT wangguoguang riboflavinalleviatescardiacfailureintypeidiabeticcardiomyopathy AT liwei riboflavinalleviatescardiacfailureintypeidiabeticcardiomyopathy AT luxiaohua riboflavinalleviatescardiacfailureintypeidiabeticcardiomyopathy AT zhaoxue riboflavinalleviatescardiacfailureintypeidiabeticcardiomyopathy |