Cargando…
α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns
The alpha calcium calmodulin kinase II (α-CaMKII) is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion chann...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282754/ https://www.ncbi.nlm.nih.gov/pubmed/22363696 http://dx.doi.org/10.1371/journal.pone.0031649 |
_version_ | 1782224118846849024 |
---|---|
author | Cho, Jeiwon Bhatt, Rushi Elgersma, Ype Silva, Alcino J. |
author_facet | Cho, Jeiwon Bhatt, Rushi Elgersma, Ype Silva, Alcino J. |
author_sort | Cho, Jeiwon |
collection | PubMed |
description | The alpha calcium calmodulin kinase II (α-CaMKII) is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D) mutants), that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D) mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D) mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D) mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information. |
format | Online Article Text |
id | pubmed-3282754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32827542012-02-23 α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns Cho, Jeiwon Bhatt, Rushi Elgersma, Ype Silva, Alcino J. PLoS One Research Article The alpha calcium calmodulin kinase II (α-CaMKII) is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D) mutants), that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D) mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D) mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D) mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information. Public Library of Science 2012-02-20 /pmc/articles/PMC3282754/ /pubmed/22363696 http://dx.doi.org/10.1371/journal.pone.0031649 Text en Cho et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cho, Jeiwon Bhatt, Rushi Elgersma, Ype Silva, Alcino J. α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title | α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title_full | α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title_fullStr | α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title_full_unstemmed | α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title_short | α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns |
title_sort | α-calcium calmodulin kinase ii modulates the temporal structure of hippocampal bursting patterns |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282754/ https://www.ncbi.nlm.nih.gov/pubmed/22363696 http://dx.doi.org/10.1371/journal.pone.0031649 |
work_keys_str_mv | AT chojeiwon acalciumcalmodulinkinaseiimodulatesthetemporalstructureofhippocampalburstingpatterns AT bhattrushi acalciumcalmodulinkinaseiimodulatesthetemporalstructureofhippocampalburstingpatterns AT elgersmaype acalciumcalmodulinkinaseiimodulatesthetemporalstructureofhippocampalburstingpatterns AT silvaalcinoj acalciumcalmodulinkinaseiimodulatesthetemporalstructureofhippocampalburstingpatterns |