Cargando…

Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity

A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide...

Descripción completa

Detalles Bibliográficos
Autores principales: Busser, Brian W., Shokri, Leila, Jaeger, Savina A., Gisselbrecht, Stephen S., Singhania, Aditi, Berger, Michael F., Zhou, Bo, Bulyk, Martha L., Michelson, Alan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Company of Biologists 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283125/
https://www.ncbi.nlm.nih.gov/pubmed/22296846
http://dx.doi.org/10.1242/dev.077362
_version_ 1782224174158184448
author Busser, Brian W.
Shokri, Leila
Jaeger, Savina A.
Gisselbrecht, Stephen S.
Singhania, Aditi
Berger, Michael F.
Zhou, Bo
Bulyk, Martha L.
Michelson, Alan M.
author_facet Busser, Brian W.
Shokri, Leila
Jaeger, Savina A.
Gisselbrecht, Stephen S.
Singhania, Aditi
Berger, Michael F.
Zhou, Bo
Bulyk, Martha L.
Michelson, Alan M.
author_sort Busser, Brian W.
collection PubMed
description A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity.
format Online
Article
Text
id pubmed-3283125
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Company of Biologists
record_format MEDLINE/PubMed
spelling pubmed-32831252012-03-15 Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity Busser, Brian W. Shokri, Leila Jaeger, Savina A. Gisselbrecht, Stephen S. Singhania, Aditi Berger, Michael F. Zhou, Bo Bulyk, Martha L. Michelson, Alan M. Development Research Articles A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity. Company of Biologists 2012-03-15 /pmc/articles/PMC3283125/ /pubmed/22296846 http://dx.doi.org/10.1242/dev.077362 Text en © 2012. http://creativecommons.org/licenses/by-nc-sa/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms.
spellingShingle Research Articles
Busser, Brian W.
Shokri, Leila
Jaeger, Savina A.
Gisselbrecht, Stephen S.
Singhania, Aditi
Berger, Michael F.
Zhou, Bo
Bulyk, Martha L.
Michelson, Alan M.
Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title_full Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title_fullStr Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title_full_unstemmed Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title_short Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
title_sort molecular mechanism underlying the regulatory specificity of a drosophila homeodomain protein that specifies myoblast identity
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283125/
https://www.ncbi.nlm.nih.gov/pubmed/22296846
http://dx.doi.org/10.1242/dev.077362
work_keys_str_mv AT busserbrianw molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT shokrileila molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT jaegersavinaa molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT gisselbrechtstephens molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT singhaniaaditi molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT bergermichaelf molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT zhoubo molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT bulykmarthal molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity
AT michelsonalanm molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity