Cargando…
Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity
A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Company of Biologists
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283125/ https://www.ncbi.nlm.nih.gov/pubmed/22296846 http://dx.doi.org/10.1242/dev.077362 |
_version_ | 1782224174158184448 |
---|---|
author | Busser, Brian W. Shokri, Leila Jaeger, Savina A. Gisselbrecht, Stephen S. Singhania, Aditi Berger, Michael F. Zhou, Bo Bulyk, Martha L. Michelson, Alan M. |
author_facet | Busser, Brian W. Shokri, Leila Jaeger, Savina A. Gisselbrecht, Stephen S. Singhania, Aditi Berger, Michael F. Zhou, Bo Bulyk, Martha L. Michelson, Alan M. |
author_sort | Busser, Brian W. |
collection | PubMed |
description | A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity. |
format | Online Article Text |
id | pubmed-3283125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-32831252012-03-15 Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity Busser, Brian W. Shokri, Leila Jaeger, Savina A. Gisselbrecht, Stephen S. Singhania, Aditi Berger, Michael F. Zhou, Bo Bulyk, Martha L. Michelson, Alan M. Development Research Articles A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity. Company of Biologists 2012-03-15 /pmc/articles/PMC3283125/ /pubmed/22296846 http://dx.doi.org/10.1242/dev.077362 Text en © 2012. http://creativecommons.org/licenses/by-nc-sa/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms. |
spellingShingle | Research Articles Busser, Brian W. Shokri, Leila Jaeger, Savina A. Gisselbrecht, Stephen S. Singhania, Aditi Berger, Michael F. Zhou, Bo Bulyk, Martha L. Michelson, Alan M. Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title | Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title_full | Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title_fullStr | Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title_full_unstemmed | Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title_short | Molecular mechanism underlying the regulatory specificity of a Drosophila homeodomain protein that specifies myoblast identity |
title_sort | molecular mechanism underlying the regulatory specificity of a drosophila homeodomain protein that specifies myoblast identity |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283125/ https://www.ncbi.nlm.nih.gov/pubmed/22296846 http://dx.doi.org/10.1242/dev.077362 |
work_keys_str_mv | AT busserbrianw molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT shokrileila molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT jaegersavinaa molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT gisselbrechtstephens molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT singhaniaaditi molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT bergermichaelf molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT zhoubo molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT bulykmarthal molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity AT michelsonalanm molecularmechanismunderlyingtheregulatoryspecificityofadrosophilahomeodomainproteinthatspecifiesmyoblastidentity |