Cargando…
Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators
BACKGROUND: Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283465/ https://www.ncbi.nlm.nih.gov/pubmed/22284700 http://dx.doi.org/10.1186/1748-717X-7-10 |
Sumario: | BACKGROUND: Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. METHODS: The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm(2). After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. RESULTS: The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. CONCLUSIONS: With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. |
---|