Cargando…
An active learning based classification strategy for the minority class problem: application to histopathology annotation
BACKGROUND: Supervised classifiers for digital pathology can improve the ability of physicians to detect and diagnose diseases such as cancer. Generating training data for classifiers is problematic, since only domain experts (e.g. pathologists) can correctly label ground truth data. Additionally, d...
Autores principales: | Doyle, Scott, Monaco, James, Feldman, Michael, Tomaszewski, John, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284114/ https://www.ncbi.nlm.nih.gov/pubmed/22034914 http://dx.doi.org/10.1186/1471-2105-12-424 |
Ejemplares similares
-
Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
por: Doyle, Scott, et al.
Publicado: (2012) -
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX
por: Basavanhally, Ajay, et al.
Publicado: (2012) -
Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces
por: Sridhar, Akshay, et al.
Publicado: (2015) -
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
por: Cruz-Roa, Angel, et al.
Publicado: (2018) -
Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images
por: Sparks, Rachel, et al.
Publicado: (2016)