Cargando…

Accelerating the Inbreeding of Multi-Parental Recombinant Inbred Lines Generated By Sibling Matings

Inbred model organisms are powerful tools for genetic studies because they provide reproducible genomes for use in mapping and genetic manipulation. Generating inbred lines via sibling matings, however, is a costly undertaking that requires many successive generations of breeding, during which time...

Descripción completa

Detalles Bibliográficos
Autores principales: Welsh, Catherine E., McMillan, Leonard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284326/
https://www.ncbi.nlm.nih.gov/pubmed/22384397
http://dx.doi.org/10.1534/g3.111.001784
Descripción
Sumario:Inbred model organisms are powerful tools for genetic studies because they provide reproducible genomes for use in mapping and genetic manipulation. Generating inbred lines via sibling matings, however, is a costly undertaking that requires many successive generations of breeding, during which time many lines fail. We evaluated several approaches for accelerating inbreeding, including the systematic use of back-crosses and marker-assisted breeder selection, which we contrasted with randomized sib-matings. Using simulations, we explored several alternative breeder-selection methods and monitored the gain and loss of genetic diversity, measured by the number of recombination-induced founder intervals, as a function of generation. For each approach we simulated 100,000 independent lines to estimate distributions of generations to achieve full-fixation as well as to achieve a mean heterozygosity level equal to 20 generations of randomized sib-mating. Our analyses suggest that the number of generations to fully inbred status can be substantially reduced with minimal impact on genetic diversity through combinations of parental backcrossing and marker-assisted inbreeding. Although simulations do not consider all confounding factors underlying the inbreeding process, such as a loss of fecundity, our models suggest many viable alternatives for accelerating the inbreeding process.