Cargando…

A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster

Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Danny E., Takeo, Satomi, Nandanan, Kavyasree, Paulson, Ariel, Gogol, Madelaine M., Noll, Aaron C., Perera, Anoja G., Walton, Kendra N., Gilliland, William D., Li, Hua, Staehling, Karen K., Blumenstiel, Justin P., Hawley, R. Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284332/
https://www.ncbi.nlm.nih.gov/pubmed/22384403
http://dx.doi.org/10.1534/g3.111.001396
Descripción
Sumario:Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(−5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.