Cargando…
Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland
Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is ma...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284728/ https://www.ncbi.nlm.nih.gov/pubmed/22375139 http://dx.doi.org/10.3389/fmicb.2012.00064 |
_version_ | 1782224395065884672 |
---|---|
author | Wang, Juanjuan Krause, Sascha Muyzer, Gerard Meima-Franke, Marion Laanbroek, Hendrikus J. Bodelier, Paul L. E. |
author_facet | Wang, Juanjuan Krause, Sascha Muyzer, Gerard Meima-Franke, Marion Laanbroek, Hendrikus J. Bodelier, Paul L. E. |
author_sort | Wang, Juanjuan |
collection | PubMed |
description | Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is mainly due to the lack of isolated representatives and molecular detection techniques. Recently, we developed PCR–DGGE and qPCR assays to detect and enumerate Gallionella-related neutrophilic iron-oxidizers (Ga-FeOB) enabling the assessment of controlling physical as well as biological factors in various ecosystems. In this study, we investigated the spatial distribution of Ga-FeOB in co-occurrence with methane-oxidizing bacteria (MOB) in a riparian wetland. Soil samples were collected at different spatial scales (ranging from meters to centimeters) representing a hydrological gradient. The diversity of Ga-FeOB was assessed using PCR–DGGE and the abundance of both Ga-FeOB and MOB by qPCR. Geostatistical methods were applied to visualize the spatial distribution of both groups. Spatial distribution as well as abundance of Ga-FeOB and MOB was clearly correlated to the hydrological gradient as expressed in moisture content of the soil. Ga-FeOB outnumbered the MOB subgroups suggesting their competitiveness or the prevalence of Fe(2+) over CH(4) oxidation in this floodplain. |
format | Online Article Text |
id | pubmed-3284728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-32847282012-02-28 Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland Wang, Juanjuan Krause, Sascha Muyzer, Gerard Meima-Franke, Marion Laanbroek, Hendrikus J. Bodelier, Paul L. E. Front Microbiol Microbiology Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is mainly due to the lack of isolated representatives and molecular detection techniques. Recently, we developed PCR–DGGE and qPCR assays to detect and enumerate Gallionella-related neutrophilic iron-oxidizers (Ga-FeOB) enabling the assessment of controlling physical as well as biological factors in various ecosystems. In this study, we investigated the spatial distribution of Ga-FeOB in co-occurrence with methane-oxidizing bacteria (MOB) in a riparian wetland. Soil samples were collected at different spatial scales (ranging from meters to centimeters) representing a hydrological gradient. The diversity of Ga-FeOB was assessed using PCR–DGGE and the abundance of both Ga-FeOB and MOB by qPCR. Geostatistical methods were applied to visualize the spatial distribution of both groups. Spatial distribution as well as abundance of Ga-FeOB and MOB was clearly correlated to the hydrological gradient as expressed in moisture content of the soil. Ga-FeOB outnumbered the MOB subgroups suggesting their competitiveness or the prevalence of Fe(2+) over CH(4) oxidation in this floodplain. Frontiers Research Foundation 2012-02-23 /pmc/articles/PMC3284728/ /pubmed/22375139 http://dx.doi.org/10.3389/fmicb.2012.00064 Text en Copyright © 2012 Wang, Krause, Muyzer, Meima-Franke, Laanbroek and Bodelier. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Microbiology Wang, Juanjuan Krause, Sascha Muyzer, Gerard Meima-Franke, Marion Laanbroek, Hendrikus J. Bodelier, Paul L. E. Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title | Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title_full | Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title_fullStr | Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title_full_unstemmed | Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title_short | Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland |
title_sort | spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284728/ https://www.ncbi.nlm.nih.gov/pubmed/22375139 http://dx.doi.org/10.3389/fmicb.2012.00064 |
work_keys_str_mv | AT wangjuanjuan spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland AT krausesascha spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland AT muyzergerard spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland AT meimafrankemarion spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland AT laanbroekhendrikusj spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland AT bodelierpaulle spatialpatternsofironandmethaneoxidizingbacterialcommunitiesinanirregularlyfloodedriparianwetland |