Cargando…

Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile...

Descripción completa

Detalles Bibliográficos
Autores principales: Krogh-Madsen, Trine, Abbott, Geoffrey W., Christini, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285569/
https://www.ncbi.nlm.nih.gov/pubmed/22383869
http://dx.doi.org/10.1371/journal.pcbi.1002390
_version_ 1782224483218620416
author Krogh-Madsen, Trine
Abbott, Geoffrey W.
Christini, David J.
author_facet Krogh-Madsen, Trine
Abbott, Geoffrey W.
Christini, David J.
author_sort Krogh-Madsen, Trine
collection PubMed
description Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely.
format Online
Article
Text
id pubmed-3285569
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32855692012-03-01 Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study Krogh-Madsen, Trine Abbott, Geoffrey W. Christini, David J. PLoS Comput Biol Research Article Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely. Public Library of Science 2012-02-23 /pmc/articles/PMC3285569/ /pubmed/22383869 http://dx.doi.org/10.1371/journal.pcbi.1002390 Text en Krogh-Madsen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Krogh-Madsen, Trine
Abbott, Geoffrey W.
Christini, David J.
Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title_full Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title_fullStr Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title_full_unstemmed Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title_short Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study
title_sort effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285569/
https://www.ncbi.nlm.nih.gov/pubmed/22383869
http://dx.doi.org/10.1371/journal.pcbi.1002390
work_keys_str_mv AT kroghmadsentrine effectsofelectricalandstructuralremodelingonatrialfibrillationmaintenanceasimulationstudy
AT abbottgeoffreyw effectsofelectricalandstructuralremodelingonatrialfibrillationmaintenanceasimulationstudy
AT christinidavidj effectsofelectricalandstructuralremodelingonatrialfibrillationmaintenanceasimulationstudy