Cargando…

A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis

Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, where...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosch, Dustin E., Willard, Francis S., Ramanujam, Ravikrishna, Kimple, Adam J., Willard, Melinda D., Naqvi, Naweed I., Siderovski, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285607/
https://www.ncbi.nlm.nih.gov/pubmed/22383884
http://dx.doi.org/10.1371/journal.ppat.1002553
_version_ 1782224490892099584
author Bosch, Dustin E.
Willard, Francis S.
Ramanujam, Ravikrishna
Kimple, Adam J.
Willard, Melinda D.
Naqvi, Naweed I.
Siderovski, David P.
author_facet Bosch, Dustin E.
Willard, Francis S.
Ramanujam, Ravikrishna
Kimple, Adam J.
Willard, Melinda D.
Naqvi, Naweed I.
Siderovski, David P.
author_sort Bosch, Dustin E.
collection PubMed
description Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gα(i1)(G42R) binding to GDP·AlF(4) (−) or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gα(q)(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.
format Online
Article
Text
id pubmed-3285607
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32856072012-03-01 A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis Bosch, Dustin E. Willard, Francis S. Ramanujam, Ravikrishna Kimple, Adam J. Willard, Melinda D. Naqvi, Naweed I. Siderovski, David P. PLoS Pathog Research Article Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gα(i1)(G42R) binding to GDP·AlF(4) (−) or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gα(q)(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants. Public Library of Science 2012-02-23 /pmc/articles/PMC3285607/ /pubmed/22383884 http://dx.doi.org/10.1371/journal.ppat.1002553 Text en Bosch et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bosch, Dustin E.
Willard, Francis S.
Ramanujam, Ravikrishna
Kimple, Adam J.
Willard, Melinda D.
Naqvi, Naweed I.
Siderovski, David P.
A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title_full A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title_fullStr A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title_full_unstemmed A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title_short A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
title_sort p-loop mutation in gα subunits prevents transition to the active state: implications for g-protein signaling in fungal pathogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285607/
https://www.ncbi.nlm.nih.gov/pubmed/22383884
http://dx.doi.org/10.1371/journal.ppat.1002553
work_keys_str_mv AT boschdustine aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT willardfranciss aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT ramanujamravikrishna aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT kimpleadamj aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT willardmelindad aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT naqvinaweedi aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT siderovskidavidp aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT boschdustine ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT willardfranciss ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT ramanujamravikrishna ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT kimpleadamj ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT willardmelindad ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT naqvinaweedi ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis
AT siderovskidavidp ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis