Cargando…
A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, where...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285607/ https://www.ncbi.nlm.nih.gov/pubmed/22383884 http://dx.doi.org/10.1371/journal.ppat.1002553 |
_version_ | 1782224490892099584 |
---|---|
author | Bosch, Dustin E. Willard, Francis S. Ramanujam, Ravikrishna Kimple, Adam J. Willard, Melinda D. Naqvi, Naweed I. Siderovski, David P. |
author_facet | Bosch, Dustin E. Willard, Francis S. Ramanujam, Ravikrishna Kimple, Adam J. Willard, Melinda D. Naqvi, Naweed I. Siderovski, David P. |
author_sort | Bosch, Dustin E. |
collection | PubMed |
description | Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gα(i1)(G42R) binding to GDP·AlF(4) (−) or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gα(q)(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants. |
format | Online Article Text |
id | pubmed-3285607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32856072012-03-01 A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis Bosch, Dustin E. Willard, Francis S. Ramanujam, Ravikrishna Kimple, Adam J. Willard, Melinda D. Naqvi, Naweed I. Siderovski, David P. PLoS Pathog Research Article Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gα(i1)(G42R) binding to GDP·AlF(4) (−) or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gα(q)(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants. Public Library of Science 2012-02-23 /pmc/articles/PMC3285607/ /pubmed/22383884 http://dx.doi.org/10.1371/journal.ppat.1002553 Text en Bosch et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bosch, Dustin E. Willard, Francis S. Ramanujam, Ravikrishna Kimple, Adam J. Willard, Melinda D. Naqvi, Naweed I. Siderovski, David P. A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title | A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title_full | A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title_fullStr | A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title_full_unstemmed | A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title_short | A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis |
title_sort | p-loop mutation in gα subunits prevents transition to the active state: implications for g-protein signaling in fungal pathogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285607/ https://www.ncbi.nlm.nih.gov/pubmed/22383884 http://dx.doi.org/10.1371/journal.ppat.1002553 |
work_keys_str_mv | AT boschdustine aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT willardfranciss aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT ramanujamravikrishna aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT kimpleadamj aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT willardmelindad aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT naqvinaweedi aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT siderovskidavidp aploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT boschdustine ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT willardfranciss ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT ramanujamravikrishna ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT kimpleadamj ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT willardmelindad ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT naqvinaweedi ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis AT siderovskidavidp ploopmutationingasubunitspreventstransitiontotheactivestateimplicationsforgproteinsignalinginfungalpathogenesis |