Cargando…

Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment

Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy older subjects and subjects with mild cognitive impairment (MCI). Here we apply DTI to 40 healthy older subjects and 33...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Dwyer, Laurence, Lamberton, Franck, Bokde, Arun L. W., Ewers, Michael, Faluyi, Yetunde O., Tanner, Colby, Mazoyer, Bernard, O'Neill, Desmond, Bartley, Máiréad, Collins, D. Rónán, Coughlan, Tara, Prvulovic, David, Hampel, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285682/
https://www.ncbi.nlm.nih.gov/pubmed/22384251
http://dx.doi.org/10.1371/journal.pone.0032441
_version_ 1782224508397027328
author O'Dwyer, Laurence
Lamberton, Franck
Bokde, Arun L. W.
Ewers, Michael
Faluyi, Yetunde O.
Tanner, Colby
Mazoyer, Bernard
O'Neill, Desmond
Bartley, Máiréad
Collins, D. Rónán
Coughlan, Tara
Prvulovic, David
Hampel, Harald
author_facet O'Dwyer, Laurence
Lamberton, Franck
Bokde, Arun L. W.
Ewers, Michael
Faluyi, Yetunde O.
Tanner, Colby
Mazoyer, Bernard
O'Neill, Desmond
Bartley, Máiréad
Collins, D. Rónán
Coughlan, Tara
Prvulovic, David
Hampel, Harald
author_sort O'Dwyer, Laurence
collection PubMed
description Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy older subjects and subjects with mild cognitive impairment (MCI). Here we apply DTI to 40 healthy older subjects and 33 MCI subjects in order to derive values for multiple indices of diffusion within the white matter voxels of each subject. DTI measures were then used together with support vector machines (SVMs) to classify control and MCI subjects. Greater than 90% sensitivity and specificity was achieved using this method, demonstrating the potential of a joint DTI and SVM pipeline for fast, objective classification of healthy older and MCI subjects. Such tools may be useful for large scale drug trials in Alzheimer's disease where the early identification of subjects with MCI is critical.
format Online
Article
Text
id pubmed-3285682
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32856822012-03-01 Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment O'Dwyer, Laurence Lamberton, Franck Bokde, Arun L. W. Ewers, Michael Faluyi, Yetunde O. Tanner, Colby Mazoyer, Bernard O'Neill, Desmond Bartley, Máiréad Collins, D. Rónán Coughlan, Tara Prvulovic, David Hampel, Harald PLoS One Research Article Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy older subjects and subjects with mild cognitive impairment (MCI). Here we apply DTI to 40 healthy older subjects and 33 MCI subjects in order to derive values for multiple indices of diffusion within the white matter voxels of each subject. DTI measures were then used together with support vector machines (SVMs) to classify control and MCI subjects. Greater than 90% sensitivity and specificity was achieved using this method, demonstrating the potential of a joint DTI and SVM pipeline for fast, objective classification of healthy older and MCI subjects. Such tools may be useful for large scale drug trials in Alzheimer's disease where the early identification of subjects with MCI is critical. Public Library of Science 2012-02-23 /pmc/articles/PMC3285682/ /pubmed/22384251 http://dx.doi.org/10.1371/journal.pone.0032441 Text en O'Dwyer et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
O'Dwyer, Laurence
Lamberton, Franck
Bokde, Arun L. W.
Ewers, Michael
Faluyi, Yetunde O.
Tanner, Colby
Mazoyer, Bernard
O'Neill, Desmond
Bartley, Máiréad
Collins, D. Rónán
Coughlan, Tara
Prvulovic, David
Hampel, Harald
Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title_full Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title_fullStr Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title_full_unstemmed Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title_short Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment
title_sort using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285682/
https://www.ncbi.nlm.nih.gov/pubmed/22384251
http://dx.doi.org/10.1371/journal.pone.0032441
work_keys_str_mv AT odwyerlaurence usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT lambertonfranck usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT bokdearunlw usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT ewersmichael usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT faluyiyetundeo usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT tannercolby usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT mazoyerbernard usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT oneilldesmond usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT bartleymairead usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT collinsdronan usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT coughlantara usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT prvulovicdavid usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment
AT hampelharald usingsupportvectormachineswithmultipleindicesofdiffusionforautomatedclassificationofmildcognitiveimpairment