Cargando…
Contingent Kernel Density Estimation
Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be the result of imprecise measurements or observation bias....
Autores principales: | Fortmann-Roe, Scott, Starfield, Richard, Getz, Wayne M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286465/ https://www.ncbi.nlm.nih.gov/pubmed/22383966 http://dx.doi.org/10.1371/journal.pone.0030549 |
Ejemplares similares
-
LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions
por: Getz, Wayne M., et al.
Publicado: (2007) -
Nonparametric kernel density estimation and its computational aspects
por: Gramacki, Artur
Publicado: (2017) -
An Adaptive Background Subtraction Method Based on Kernel Density Estimation
por: Lee, Jeisung, et al.
Publicado: (2012) -
Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation
por: Chen, Rongda, et al.
Publicado: (2013) -
Deconvoluting kernel density estimation and regression for locally differentially private data
por: Farokhi, Farhad
Publicado: (2020)