Cargando…

β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells

Glioblastoma multiforme (GBM) is a commonly occurring brain tumor with a poor prognosis. GBM can develop both “de novo” or evolve from a previous astrocytoma and is characterized by high proliferation and infiltration into the surrounding tissue. Following treatment (surgery, radiotherapy, and chemo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nager, Mireia, Bhardwaj, Deepshikha, Cantí, Carles, Medina, Loreta, Nogués, Pere, Herreros, Judit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286890/
https://www.ncbi.nlm.nih.gov/pubmed/22400111
http://dx.doi.org/10.1155/2012/192362
Descripción
Sumario:Glioblastoma multiforme (GBM) is a commonly occurring brain tumor with a poor prognosis. GBM can develop both “de novo” or evolve from a previous astrocytoma and is characterized by high proliferation and infiltration into the surrounding tissue. Following treatment (surgery, radiotherapy, and chemotherapy), tumors often reappear. Glioma-initiating cells (GICs) have been identified in GBM and are thought to be responsible for tumors initiation, their continued growth, and recurrence. β-catenin, a component of the cell-cell adhesion complex and of the canonical Wnt pathway, regulates proliferation, adhesion, and migration in different cell types. β-catenin and components of the Wnt canonical pathway are commonly overexpressed in GBM. Here, we review previous work on the role of Wnt/β-catenin signalling in glioma initiation, proliferation, and invasion. Understanding the molecular mechanisms regulating GIC biology and glioma progression may help in identifying novel therapeutic targets for GBM treatment.