Cargando…
Solid Dynamic Models for Analysis of Stress and Strain in Human Hearts
This paper proposes a solid model based on four-dimensional trivariate B-spline for strain and stress analysis of ventricular myocardium. With a series of processing steps in the four-dimensional medical images, the feature points of ventricular inner and outer wall are obtained. A B-spline surface...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287043/ https://www.ncbi.nlm.nih.gov/pubmed/22400053 http://dx.doi.org/10.1155/2012/634534 |
Sumario: | This paper proposes a solid model based on four-dimensional trivariate B-spline for strain and stress analysis of ventricular myocardium. With a series of processing steps in the four-dimensional medical images, the feature points of ventricular inner and outer wall are obtained. A B-spline surface is then used to build the dynamic deformation model of the myocardial walls. With such a surface model, a hexahedron control mesh can be constructed by sweeping the cloud data, and the ventricular solid model is built by fitting the trivariate B-spline parameters. Based on these models, a method of isogeometric analysis can be applied to calculate the stress and strain continuously distributed in the ventricle. The model is represented smoothly in the cylindrical coordinate system and is easy to measure myocardium dynamics for finding abnormal motion. Experiments are carried out for comparing the stress and strain distribution. It is found that the solid model can determine ventricular dynamics which can well reflect the deformation distribution in the heart and imply early clues of cardiac diseases. |
---|