Cargando…
Salamanders and fish can regenerate lost structures - why can't we?
The recent introduction of in vivo lineage-tracing techniques using fluorescently labeled cells challenged the long-standing view that complete dedifferentiation is a major force driving vertebrate tissue regeneration. The report in BMC Developmental Biology by Juan Carlos Izpisúa Belmonte and colle...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287246/ https://www.ncbi.nlm.nih.gov/pubmed/22369645 http://dx.doi.org/10.1186/1741-7007-10-15 |
Sumario: | The recent introduction of in vivo lineage-tracing techniques using fluorescently labeled cells challenged the long-standing view that complete dedifferentiation is a major force driving vertebrate tissue regeneration. The report in BMC Developmental Biology by Juan Carlos Izpisúa Belmonte and colleagues adds a new twist to a rapidly evolving view of the origin of blastemal cells. As classic and recent experimental findings are considered together, a new perspective on vertebrate muscle regeneration is emerging. See research article http://www.biomedcentral.com/1471-213X/12/9 |
---|