Cargando…

Range-wide genetic population structure of common pochard (Aythya ferina): a potentially important vector of highly pathogenic avian influenza viruses

An understanding of the distribution and spatial structure of the natural vectors of zoonothic pathogens is of interest for effective disease control and prevention. Here, we investigate the range-wide population genetic structure of common pochard (Aythya ferina), a long-distance migratory duck and...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yang, Keller, Irene, Heckel, Gerald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287338/
https://www.ncbi.nlm.nih.gov/pubmed/22393520
http://dx.doi.org/10.1002/ece3.46
Descripción
Sumario:An understanding of the distribution and spatial structure of the natural vectors of zoonothic pathogens is of interest for effective disease control and prevention. Here, we investigate the range-wide population genetic structure of common pochard (Aythya ferina), a long-distance migratory duck and potential vector of highly pathogenic avian influenza. We collected several hundred samples from breeding and wintering grounds across Eurasia including some H5N1-positive individuals and generated partial sequences of the mitochondrial control region and multilocus microsatellite genotypes. Genetic differentiation among breeding populations was significant for both marker types but higher for maternally inherited mtDNA than for biparentally inherited nuclear markers. There was only weak genetic divergence between ducks sampled in Europe and East Asia, and genetic differentiation between populations was not generally associated with geographical distance. No evidence of genetic substructure was detected for ducks sampled on the European wintering grounds. Our results suggest limited breeding-site fidelity, especially in females, but extensive population admixture on the wintering grounds. The specific role of pochards as natural vectors of zoonotic pathogens and in particular H5N1 remains to be clarified but our results point to wintering grounds as potential hotspots for disease transmission.