Cargando…
Drug-drug relationship based on target information: application to drug target identification
BACKGROUND: Drugs that bind to common targets likely exert similar activities. In this target-centric view, the inclusion of richer target information may better represent the relationships between drugs and their activities. Under this assumption, we expanded the “common binding rule” assumption of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287478/ https://www.ncbi.nlm.nih.gov/pubmed/22784569 http://dx.doi.org/10.1186/1752-0509-5-S2-S12 |
_version_ | 1782224672310427648 |
---|---|
author | Park, Keunwan Kim, Dongsup |
author_facet | Park, Keunwan Kim, Dongsup |
author_sort | Park, Keunwan |
collection | PubMed |
description | BACKGROUND: Drugs that bind to common targets likely exert similar activities. In this target-centric view, the inclusion of richer target information may better represent the relationships between drugs and their activities. Under this assumption, we expanded the “common binding rule” assumption of QSAR to create a new drug-drug relationship score (DRS). METHOD: Our method uses various chemical features to encode drug target information into the drug-drug relationship information. Specifically, drug pairs were transformed into numerical vectors containing the basal drug properties and their differences. After that, machine learning techniques such as data cleaning, dimension reduction, and ensemble classifier were used to prioritize drug pairs bound to a common target. In other words, the estimation of the drug-drug relationship is restated as a large-scale classification problem, which provides the framework for using state-of-the-art machine learning techniques with thousands of chemical features for newly defining drug-drug relationships. CONCLUSIONS: Various aspects of the presented score were examined to determine its reliability and usefulness: the abundance of common domains for the predicted drug pairs, c.a. 80% coverage for known targets, successful identifications of unknown targets, and a meaningful correlation with another cutting-edge method for analyzing drug similarities. The most significant strength of our method is that the DRS can be used to describe phenotypic similarities, such as pharmacological effects. |
format | Online Article Text |
id | pubmed-3287478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32874782012-02-28 Drug-drug relationship based on target information: application to drug target identification Park, Keunwan Kim, Dongsup BMC Syst Biol Proceedings BACKGROUND: Drugs that bind to common targets likely exert similar activities. In this target-centric view, the inclusion of richer target information may better represent the relationships between drugs and their activities. Under this assumption, we expanded the “common binding rule” assumption of QSAR to create a new drug-drug relationship score (DRS). METHOD: Our method uses various chemical features to encode drug target information into the drug-drug relationship information. Specifically, drug pairs were transformed into numerical vectors containing the basal drug properties and their differences. After that, machine learning techniques such as data cleaning, dimension reduction, and ensemble classifier were used to prioritize drug pairs bound to a common target. In other words, the estimation of the drug-drug relationship is restated as a large-scale classification problem, which provides the framework for using state-of-the-art machine learning techniques with thousands of chemical features for newly defining drug-drug relationships. CONCLUSIONS: Various aspects of the presented score were examined to determine its reliability and usefulness: the abundance of common domains for the predicted drug pairs, c.a. 80% coverage for known targets, successful identifications of unknown targets, and a meaningful correlation with another cutting-edge method for analyzing drug similarities. The most significant strength of our method is that the DRS can be used to describe phenotypic similarities, such as pharmacological effects. BioMed Central 2011-12-14 /pmc/articles/PMC3287478/ /pubmed/22784569 http://dx.doi.org/10.1186/1752-0509-5-S2-S12 Text en Copyright ©2011 Park and Kim; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Park, Keunwan Kim, Dongsup Drug-drug relationship based on target information: application to drug target identification |
title | Drug-drug relationship based on target information: application to drug target identification |
title_full | Drug-drug relationship based on target information: application to drug target identification |
title_fullStr | Drug-drug relationship based on target information: application to drug target identification |
title_full_unstemmed | Drug-drug relationship based on target information: application to drug target identification |
title_short | Drug-drug relationship based on target information: application to drug target identification |
title_sort | drug-drug relationship based on target information: application to drug target identification |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287478/ https://www.ncbi.nlm.nih.gov/pubmed/22784569 http://dx.doi.org/10.1186/1752-0509-5-S2-S12 |
work_keys_str_mv | AT parkkeunwan drugdrugrelationshipbasedontargetinformationapplicationtodrugtargetidentification AT kimdongsup drugdrugrelationshipbasedontargetinformationapplicationtodrugtargetidentification |