Cargando…
Learning the structure of gene regulatory networks from time series gene expression data
BACKGROUND: Dynamic Bayesian Network (DBN) is an approach widely used for reconstruction of gene regulatory networks from time-series microarray data. Its performance in network reconstruction depends on a structure learning algorithm. REVEAL (REVerse Engineering ALgorithm) is one of the algorithms...
Autores principales: | Li, Haoni, Wang, Nan, Gong, Ping, Perkins, Edward J, Zhang, Chaoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287495/ https://www.ncbi.nlm.nih.gov/pubmed/22369588 http://dx.doi.org/10.1186/1471-2164-12-S5-S13 |
Ejemplares similares
-
Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
por: Li, Peng, et al.
Publicado: (2014) -
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data
por: Yang, Bei, et al.
Publicado: (2018) -
Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data
por: Ruan, Jianhua, et al.
Publicado: (2009) -
RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags
por: Li, Ying, et al.
Publicado: (2011)