Cargando…
Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile
BACKGROUND: Microarray data have been used for gene signature selection to predict clinical outcomes. Many studies have attempted to identify factors that affect models' performance with only little success. Fine-tuning of model parameters and optimizing each step of the modeling process often...
Autores principales: | Zhao, Chen, Shi, Leming, Tong, Weida, Shaughnessy, John D, Oberthuer, André, Pusztai, Lajos, Deng, Youping, Symmans, W Fraser, Shi, Tieliu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287499/ https://www.ncbi.nlm.nih.gov/pubmed/22369035 http://dx.doi.org/10.1186/1471-2164-12-S5-S3 |
Ejemplares similares
-
Maximizing biomarker discovery by minimizing gene signatures
por: Chang, Chang, et al.
Publicado: (2011) -
Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
por: Zhang, Wenqian, et al.
Publicado: (2015) -
Dissecting the Characteristics and Dynamics of Human Protein Complexes at Transcriptome Cascade Using RNA-Seq Data
por: Chen, Geng, et al.
Publicado: (2013) -
Lack of sufficiently strong informative features limits the potential of gene expression analysis as predictive tool for many clinical classification problems
por: Hess, Kenneth R, et al.
Publicado: (2011) -
Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data
por: Tan, Yongxi, et al.
Publicado: (2005)