Cargando…
Integration of breast cancer gene signatures based on graph centrality
BACKGROUND: Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene e...
Autores principales: | Wang, Jianxin, Chen, Gang, Li, Min, Pan, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287565/ https://www.ncbi.nlm.nih.gov/pubmed/22784616 http://dx.doi.org/10.1186/1752-0509-5-S3-S10 |
Ejemplares similares
-
CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph
por: Wang, Wei, et al.
Publicado: (2020) -
Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data
por: Li, Min, et al.
Publicado: (2012) -
Integrative Analysis of KCNK Genes and Establishment of a Specific Prognostic Signature for Breast Cancer
por: Zou, Yutian, et al.
Publicado: (2022) -
A six-gene-based signature for breast cancer radiotherapy sensitivity estimation
por: Chen, Xing, et al.
Publicado: (2020) -
A Novel Signature Integrated of Immunoglobulin, Glycosylation and Anti-Viral Genes to Predict Prognosis for Breast Cancer
por: Xu, Shengshan, et al.
Publicado: (2022)