Cargando…
State Space Model with hidden variables for reconstruction of gene regulatory networks
BACKGROUND: State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method,...
Autores principales: | Wu, Xi, Li, Peng, Wang, Nan, Gong, Ping, Perkins, Edward J, Deng, Youping, Zhang, Chaoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287571/ https://www.ncbi.nlm.nih.gov/pubmed/22784622 http://dx.doi.org/10.1186/1752-0509-5-S3-S3 |
Ejemplares similares
-
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
por: Li, Peng, et al.
Publicado: (2014) -
Learning the structure of gene regulatory networks from time series gene expression data
por: Li, Haoni, et al.
Publicado: (2011) -
A novel gene network inference algorithm using predictive minimum description length approach
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags
por: Li, Ying, et al.
Publicado: (2011)