Cargando…
Performance of random forests and logic regression methods using mini-exome sequence data
Machine learning approaches are an attractive option for analyzing large-scale data to detect genetic variants that contribute to variation of a quantitative trait, without requiring specific distributional assumptions. We evaluate two machine learning methods, random forests and logic regression, a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287827/ https://www.ncbi.nlm.nih.gov/pubmed/22373484 http://dx.doi.org/10.1186/1753-6561-5-S9-S104 |
Sumario: | Machine learning approaches are an attractive option for analyzing large-scale data to detect genetic variants that contribute to variation of a quantitative trait, without requiring specific distributional assumptions. We evaluate two machine learning methods, random forests and logic regression, and compare them to standard simple univariate linear regression, using the Genetic Analysis Workshop 17 mini-exome data. We also apply these methods after collapsing multiple rare variants within genes and within gene pathways. Linear regression and the random forest method performed better when rare variants were collapsed based on genes or gene pathways than when each variant was analyzed separately. Logic regression performed better when rare variants were collapsed based on genes rather than on pathways. |
---|