Cargando…
Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data
Using single-nucleotide polymorphism (SNP) genotypes from the 1000 Genomes Project pilot3 data provided for Genetic Analysis Workshop 17 (GAW17), we applied Bayesian network structure learning (BNSL) to identify potential causal SNPs associated with the Affected phenotype. We focus on the setting in...
Autores principales: | Schlosberg, Christopher E, Schwantes-An, Tae-Hwi, Duan, Weimin, Saccone, Nancy L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287832/ https://www.ncbi.nlm.nih.gov/pubmed/22373088 http://dx.doi.org/10.1186/1753-6561-5-S9-S109 |
Ejemplares similares
-
Phenotype forecasting with SNPs data through gene-based Bayesian networks
por: Malovini, Alberto, et al.
Publicado: (2009) -
Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions
por: Liu, Ying, et al.
Publicado: (2007) -
A Markov blanket-based method for detecting causal SNPs in GWAS
por: Han, Bing, et al.
Publicado: (2010) -
Investigating potential causal relationships between SNPs, DNA methylation and HDL
por: Jiang, Lai, et al.
Publicado: (2018) -
Identifying rare and common variants with Bayesian variable selection
por: Oh, Cheongeun
Publicado: (2016)