Cargando…
Comparison of collapsing methods for the statistical analysis of rare variants
Novel technologies allow sequencing of whole genomes and are considered as an emerging approach for the identification of rare disease-associated variants. Recent studies have shown that multiple rare variants can explain a particular proportion of the genetic basis for disease. Following this assum...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287839/ https://www.ncbi.nlm.nih.gov/pubmed/22373249 http://dx.doi.org/10.1186/1753-6561-5-S9-S115 |
Sumario: | Novel technologies allow sequencing of whole genomes and are considered as an emerging approach for the identification of rare disease-associated variants. Recent studies have shown that multiple rare variants can explain a particular proportion of the genetic basis for disease. Following this assumption, we compare five collapsing approaches to test for groupwise association with disease status, using simulated data provided by Genetic Analysis Workshop 17 (GAW17). Variants are collapsed in different scenarios per gene according to different minor allele frequency (MAF) thresholds and their functionality. For comparing the different approaches, we consider the family-wise error rate and the power. Most of the methods could maintain the nominal type I error levels well for small MAF thresholds, but the power was generally low. Although the methods considered in this report are common approaches for analyzing rare variants, they performed poorly with respect to the simulated disease phenotype in the GAW17 data set. |
---|