Cargando…
Gene-based partial least-squares approaches for detecting rare variant associations with complex traits
Genome-wide association studies are largely based on single-nucleotide polymorphisms and rest on the common disease/common variants (single-nucleotide polymorphisms) hypothesis. However, it has been argued in the last few years and is well accepted now that rare variants are valuable for studying co...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287853/ https://www.ncbi.nlm.nih.gov/pubmed/22373126 http://dx.doi.org/10.1186/1753-6561-5-S9-S19 |
Sumario: | Genome-wide association studies are largely based on single-nucleotide polymorphisms and rest on the common disease/common variants (single-nucleotide polymorphisms) hypothesis. However, it has been argued in the last few years and is well accepted now that rare variants are valuable for studying common diseases. Although current genome-wide association studies have successfully discovered many genetic variants that are associated with common diseases, detecting associated rare variants remains a great challenge. Here, we propose two partial least-squares approaches to aggregate the signals of many single-nucleotide polymorphisms (SNPs) within a gene to reveal possible genetic effects related to rare variants. The availability of the 1000 Genomes Project offers us the opportunity to evaluate the effectiveness of these two gene-based approaches. Compared to results from a SNP-based analysis, the proposed methods were able to identify some (rare) SNPs that were missed by the SNP-based analysis. |
---|