Cargando…

Gene-based partial least-squares approaches for detecting rare variant associations with complex traits

Genome-wide association studies are largely based on single-nucleotide polymorphisms and rest on the common disease/common variants (single-nucleotide polymorphisms) hypothesis. However, it has been argued in the last few years and is well accepted now that rare variants are valuable for studying co...

Descripción completa

Detalles Bibliográficos
Autores principales: Turkmen, Asuman S, Lin, Shili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287853/
https://www.ncbi.nlm.nih.gov/pubmed/22373126
http://dx.doi.org/10.1186/1753-6561-5-S9-S19
Descripción
Sumario:Genome-wide association studies are largely based on single-nucleotide polymorphisms and rest on the common disease/common variants (single-nucleotide polymorphisms) hypothesis. However, it has been argued in the last few years and is well accepted now that rare variants are valuable for studying common diseases. Although current genome-wide association studies have successfully discovered many genetic variants that are associated with common diseases, detecting associated rare variants remains a great challenge. Here, we propose two partial least-squares approaches to aggregate the signals of many single-nucleotide polymorphisms (SNPs) within a gene to reveal possible genetic effects related to rare variants. The availability of the 1000 Genomes Project offers us the opportunity to evaluate the effectiveness of these two gene-based approaches. Compared to results from a SNP-based analysis, the proposed methods were able to identify some (rare) SNPs that were missed by the SNP-based analysis.