Cargando…
Identifying causal rare variants of disease through family-based analysis of Genetics Analysis Workshop 17 data set
Linkage- and association-based methods have been proposed for mapping disease-causing rare variants. Based on the family information provided in the Genetic Analysis Workshop 17 data set, we formulate a two-pronged approach that combines both methods. Using the identity-by-descent information provid...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287856/ https://www.ncbi.nlm.nih.gov/pubmed/22373204 http://dx.doi.org/10.1186/1753-6561-5-S9-S21 |
Sumario: | Linkage- and association-based methods have been proposed for mapping disease-causing rare variants. Based on the family information provided in the Genetic Analysis Workshop 17 data set, we formulate a two-pronged approach that combines both methods. Using the identity-by-descent information provided for eight extended pedigrees (n = 697) and the simulated quantitative trait Q1, we explore various traditional nonparametric linkage analysis methods; the best result is obtained by assuming between-family heterogeneity and applying the Haseman-Elston regression to each pedigree separately. We discover strong signals from two genes in two different families and weaker signals for a third gene from two other families. As an exploratory approach, we apply an association test based on a modified family-based association test statistic to all rare variants (frequency < 1% or < 3%) designated as causal for Q1. Family-based association tests correctly identified causal single-nucleotide polymorphisms for four genes (KDR, VEGFA, VEGFC, and FLT1). Our results suggest that both linkage and association tests with families show promise for identifying rare variants. |
---|