Cargando…
Using LASSO regression to detect predictive aggregate effects in genetic studies
We use least absolute shrinkage and selection operator (LASSO) regression to select genetic markers and phenotypic features that are most informative with respect to a trait of interest. We compare several strategies for applying LASSO methods in risk prediction models, using the Genetic Analysis Wo...
Autores principales: | Fontanarosa, Joel B, Dai, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287908/ https://www.ncbi.nlm.nih.gov/pubmed/22373537 http://dx.doi.org/10.1186/1753-6561-5-S9-S69 |
Ejemplares similares
-
Evaluation of a LASSO regression approach on the unrelated samples of Genetic Analysis Workshop 17
por: Guo, Wei, et al.
Publicado: (2011) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Detecting longitudinal effects of haplotypes and smoking on hypertension using B-splines and Bayesian LASSO
por: Xia, Shuang, et al.
Publicado: (2014) -
A LASSO penalized regression approach for genome-wide association analyses using related individuals: application to the Genetic Analysis Workshop 19 simulated data
por: Papachristou, Charalampos, et al.
Publicado: (2016)