Cargando…
Finding genes that influence quantitative traits with tree-based clustering
We present a new statistical method to identify genes in which one or more variants influence quantitative traits. We use the Genetic Analysis Workshop 17 (GAW17) data set of unrelated individuals as a test of the method on the raw GAW17 phenotypes and on residuals after fitting linear models to ind...
Autores principales: | Wilson, Ian J, Howey, Richard AJ, Houniet, Darren T, Santibanez-Koref, Mauro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287940/ https://www.ncbi.nlm.nih.gov/pubmed/22373331 http://dx.doi.org/10.1186/1753-6561-5-S9-S98 |
Ejemplares similares
-
Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data
por: Eu-ahsunthornwattana, Jakris, et al.
Publicado: (2014) -
Controlling for false positive findings of trans-hubs in expression quantitative trait loci mapping
por: Peng, Jie, et al.
Publicado: (2007) -
Boosting alternating decision trees modeling of disease trait information
por: Liu, Kuang-Yu, et al.
Publicado: (2005) -
Genome-wide linkage scan on estimated breeding values for a quantitative trait
por: Zabaneh, Delilah, et al.
Publicado: (2003) -
Using population data for assessing next-generation sequencing performance
por: Houniet, Darren T., et al.
Publicado: (2015)