Cargando…
Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting
We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288038/ https://www.ncbi.nlm.nih.gov/pubmed/22384026 http://dx.doi.org/10.1371/journal.pone.0031457 |
_version_ | 1782224791022862336 |
---|---|
author | Veatch, Sarah L. Machta, Benjamin B. Shelby, Sarah A. Chiang, Ethan N. Holowka, David A. Baird, Barbara A. |
author_facet | Veatch, Sarah L. Machta, Benjamin B. Shelby, Sarah A. Chiang, Ethan N. Holowka, David A. Baird, Barbara A. |
author_sort | Veatch, Sarah L. |
collection | PubMed |
description | We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins. |
format | Online Article Text |
id | pubmed-3288038 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32880382012-03-01 Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting Veatch, Sarah L. Machta, Benjamin B. Shelby, Sarah A. Chiang, Ethan N. Holowka, David A. Baird, Barbara A. PLoS One Research Article We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins. Public Library of Science 2012-02-27 /pmc/articles/PMC3288038/ /pubmed/22384026 http://dx.doi.org/10.1371/journal.pone.0031457 Text en Veatch et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Veatch, Sarah L. Machta, Benjamin B. Shelby, Sarah A. Chiang, Ethan N. Holowka, David A. Baird, Barbara A. Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title | Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title_full | Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title_fullStr | Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title_full_unstemmed | Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title_short | Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting |
title_sort | correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288038/ https://www.ncbi.nlm.nih.gov/pubmed/22384026 http://dx.doi.org/10.1371/journal.pone.0031457 |
work_keys_str_mv | AT veatchsarahl correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting AT machtabenjaminb correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting AT shelbysaraha correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting AT chiangethann correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting AT holowkadavida correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting AT bairdbarbaraa correlationfunctionsquantifysuperresolutionimagesandestimateapparentclusteringduetoovercounting |