Cargando…
How Can Selection of Biologically Inspired Features Improve the Performance of a Robust Object Recognition Model?
Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects i...
Autores principales: | Ghodrati, Masoud, Khaligh-Razavi, Seyed-Mahdi, Ebrahimpour, Reza, Rajaei, Karim, Pooyan, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288095/ https://www.ncbi.nlm.nih.gov/pubmed/22384229 http://dx.doi.org/10.1371/journal.pone.0032357 |
Ejemplares similares
-
A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans
por: Farzmahdi, Amirhossein, et al.
Publicado: (2016) -
Beyond core object recognition: Recurrent processes account for object recognition under occlusion
por: Rajaei, Karim, et al.
Publicado: (2019) -
Feedforward object-vision models only tolerate small image variations compared to human
por: Ghodrati, Masoud, et al.
Publicado: (2014) -
The importance of visual features in generic vs. specialized object recognition: a computational study
por: Ghodrati, Masoud, et al.
Publicado: (2014) -
A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization
por: Rajaei, Karim, et al.
Publicado: (2012)