Cargando…
Dynamic O-GlcNAc Modification Regulates CREB-Mediated Gene Expression and Memory Formation
The transcription factor CREB is a key regulator of many neuronal processes, including brain development, circadian rhythm, and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288555/ https://www.ncbi.nlm.nih.gov/pubmed/22267118 http://dx.doi.org/10.1038/nchembio.770 |
Sumario: | The transcription factor CREB is a key regulator of many neuronal processes, including brain development, circadian rhythm, and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here we expand on a chemoenzymatic strategy for quantifying glycosylation stoichiometries to characterize the functional roles of CREB glycosylation in neurons. We show that CREB is dynamically O-GlcNAc-modified in response to neuronal activity and glycosylation represses CREB-dependent transcription by impairing its association with the co-activator CRTC/TORC. Blocking glycosylation of CREB altered cellular function and behavioral plasticity, enhancing both axonal and dendritic growth and long-term memory consolidation. Our findings demonstrate a new role for O-glycosylation in memory formation and provide a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identify a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and memory. |
---|