Cargando…
Collision of millimetre droplets induces DNA and protein transfection into cells
Nonperturbing and simple transfection methods are important for modern techniques used in biotechnology. Recently, we reported that electrospraying can be applied to DNA transfection in cell lines, bacteria, and chicken embryos. However, the transfection efficiency was only about 2%. To improve the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289038/ https://www.ncbi.nlm.nih.gov/pubmed/22375250 http://dx.doi.org/10.1038/srep00289 |
Sumario: | Nonperturbing and simple transfection methods are important for modern techniques used in biotechnology. Recently, we reported that electrospraying can be applied to DNA transfection in cell lines, bacteria, and chicken embryos. However, the transfection efficiency was only about 2%. To improve the transfection rate, physical properties of the sprayed droplets were studied in different variations of the method. We describe a highly efficient technique (30–93%) for introduction of materials such as DNA and protein into living cells by electrospraying droplets of a high conductivity liquid onto cells incubated with the material for transfection. Electric conductivity has a sizable influence on the success of transfection. In contrast, molecular weight of the transfected material, types of ions in the electrospray solution, and the osmotic pressure do not influence transfection efficiency. The physical analysis revealed that collision of cells with millimetre-sized droplets activates intracellular uptake. |
---|