Cargando…

A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery

BACKGROUND: The success of gene therapy asks for the development of multifunctional vectors that could overcome various gene delivery barriers, such as the cell membrane, endosomal membrane, and nuclear membrane. Layer-by-layer technique is an efficient method with easy operation which can be used f...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Peng, Liu, Donghua, Miao, Lei, Liu, Chunxi, Sun, Xiaoli, Liu, Yongjun, Zhang, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289447/
https://www.ncbi.nlm.nih.gov/pubmed/22393290
http://dx.doi.org/10.2147/IJN.S26955
Descripción
Sumario:BACKGROUND: The success of gene therapy asks for the development of multifunctional vectors that could overcome various gene delivery barriers, such as the cell membrane, endosomal membrane, and nuclear membrane. Layer-by-layer technique is an efficient method with easy operation which can be used for the assembly of multifunctional gene carriers. This work describes a pH-sensitive multifunctional gene vector that offered long circulation property but avoided the inhibition of tumor cellular uptake of gene carriers associated with the use of polyethylene glycol. METHODS: Deoxyribonucleic acid (DNA) was firstly condensed with protamine into a cationic core which was used as assembly template. Then, additional layers of anionic DNA, cationic liposomes, and o-carboxymethyl-chitosan (CMCS) were alternately adsorbed onto the template via layer-by-layer technique and finally the multifunctional vector called CMCS-cationic liposome-coated DNA/protamine/DNA complexes (CLDPD) was constructed. For in vitro test, the cytotoxicity and transfection investigation was carried out on HepG2 cell line. For in vivo evaluation, CMCS-CLDPD was intratumorally injected into tumor-bearing mice and the tumor cells were isolated for fluorescence determination of transfection efficiency. RESULTS: CMCS-CLDPD had ellipsoidal shapes and showed “core-shell” structure which showed stabilization property in serum and effective protection of DNA from nuclease degradation. In vitro and in vivo transfection results demonstrated that CMCS-CLDPD had pH-sensitivity and the outermost layer of CMCS fell off in the tumor tissue, which could not only protect CMCS- CLDPD from serum interaction but also enhance gene transfection efficiency. CONCLUSION: These results demonstrated that multifunctional CMCS-CLDPD had pH- sensitivity, which may provide a new approach for the antitumor gene delivery.