Cargando…

Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

PURPOSE: To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO(2)-NH(2))-coated superparamagnetic iron oxide (SPIO@SiO(2)-NH(2)) nanoparticles with three other types of SPIO nanoparticles coated with SiO(2) (SPIO@SiO(2)), dextran (SPIO@dextran), or bare SPIO in mammalian cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xiao-Ming, Wang, Yi-Xiang J, Leung, Ken Cham-Fai, Lee, Siu-Fung, Zhao, Feng, Wang, Da-Wei, Lai, Josie MY, Wan, Chao, Cheng, Christopher HK, Ahuja, Anil T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289449/
https://www.ncbi.nlm.nih.gov/pubmed/22393292
http://dx.doi.org/10.2147/IJN.S28316
_version_ 1782224871545110528
author Zhu, Xiao-Ming
Wang, Yi-Xiang J
Leung, Ken Cham-Fai
Lee, Siu-Fung
Zhao, Feng
Wang, Da-Wei
Lai, Josie MY
Wan, Chao
Cheng, Christopher HK
Ahuja, Anil T
author_facet Zhu, Xiao-Ming
Wang, Yi-Xiang J
Leung, Ken Cham-Fai
Lee, Siu-Fung
Zhao, Feng
Wang, Da-Wei
Lai, Josie MY
Wan, Chao
Cheng, Christopher HK
Ahuja, Anil T
author_sort Zhu, Xiao-Ming
collection PubMed
description PURPOSE: To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO(2)-NH(2))-coated superparamagnetic iron oxide (SPIO@SiO(2)-NH(2)) nanoparticles with three other types of SPIO nanoparticles coated with SiO(2) (SPIO@SiO(2)), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. MATERIALS AND METHODS: Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. RESULTS: Transmission electron microscopy demonstrated surface coating with SiO(2)-NH(2), SiO(2), and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO(2)-NH(2) nanoparticles had the highest cellular uptake efficiency. SPIO@SiO(2)-NH(2), bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO(2) reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. CONCLUSION: Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a number of cell lines.
format Online
Article
Text
id pubmed-3289449
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-32894492012-03-05 Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines Zhu, Xiao-Ming Wang, Yi-Xiang J Leung, Ken Cham-Fai Lee, Siu-Fung Zhao, Feng Wang, Da-Wei Lai, Josie MY Wan, Chao Cheng, Christopher HK Ahuja, Anil T Int J Nanomedicine Original Research PURPOSE: To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO(2)-NH(2))-coated superparamagnetic iron oxide (SPIO@SiO(2)-NH(2)) nanoparticles with three other types of SPIO nanoparticles coated with SiO(2) (SPIO@SiO(2)), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines. MATERIALS AND METHODS: Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 μg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated. RESULTS: Transmission electron microscopy demonstrated surface coating with SiO(2)-NH(2), SiO(2), and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@ SiO(2)-NH(2) nanoparticles had the highest cellular uptake efficiency. SPIO@SiO(2)-NH(2), bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 μg Fe/mL, while SPIO@SiO(2) reduced RAW 264.7 cell viability from 10 to 200 μg Fe/mL in a dose-dependent manner. CONCLUSION: Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a number of cell lines. Dove Medical Press 2012 2012-02-21 /pmc/articles/PMC3289449/ /pubmed/22393292 http://dx.doi.org/10.2147/IJN.S28316 Text en © 2012 Zhu et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Zhu, Xiao-Ming
Wang, Yi-Xiang J
Leung, Ken Cham-Fai
Lee, Siu-Fung
Zhao, Feng
Wang, Da-Wei
Lai, Josie MY
Wan, Chao
Cheng, Christopher HK
Ahuja, Anil T
Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_full Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_fullStr Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_full_unstemmed Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_short Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_sort enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289449/
https://www.ncbi.nlm.nih.gov/pubmed/22393292
http://dx.doi.org/10.2147/IJN.S28316
work_keys_str_mv AT zhuxiaoming enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wangyixiangj enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT leungkenchamfai enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT leesiufung enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT zhaofeng enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wangdawei enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT laijosiemy enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wanchao enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT chengchristopherhk enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT ahujaanilt enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines