Cargando…
Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289674/ https://www.ncbi.nlm.nih.gov/pubmed/22389718 http://dx.doi.org/10.1371/journal.pone.0032700 |
_version_ | 1782224895966445568 |
---|---|
author | Owen, Carl Czopek, Alicja Agouni, Abdelali Grant, Louise Judson, Robert Lees, Emma K. Mcilroy, George D. Göransson, Olga Welch, Andy Bence, Kendra K. Kahn, Barbara B. Neel, Benjamin G. Mody, Nimesh Delibegović, Mirela |
author_facet | Owen, Carl Czopek, Alicja Agouni, Abdelali Grant, Louise Judson, Robert Lees, Emma K. Mcilroy, George D. Göransson, Olga Welch, Andy Bence, Kendra K. Kahn, Barbara B. Neel, Benjamin G. Mody, Nimesh Delibegović, Mirela |
author_sort | Owen, Carl |
collection | PubMed |
description | Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(−/−)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(−/−) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(−/−) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes. |
format | Online Article Text |
id | pubmed-3289674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32896742012-03-02 Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis Owen, Carl Czopek, Alicja Agouni, Abdelali Grant, Louise Judson, Robert Lees, Emma K. Mcilroy, George D. Göransson, Olga Welch, Andy Bence, Kendra K. Kahn, Barbara B. Neel, Benjamin G. Mody, Nimesh Delibegović, Mirela PLoS One Research Article Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(−/−)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(−/−) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(−/−) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes. Public Library of Science 2012-02-28 /pmc/articles/PMC3289674/ /pubmed/22389718 http://dx.doi.org/10.1371/journal.pone.0032700 Text en Owen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Owen, Carl Czopek, Alicja Agouni, Abdelali Grant, Louise Judson, Robert Lees, Emma K. Mcilroy, George D. Göransson, Olga Welch, Andy Bence, Kendra K. Kahn, Barbara B. Neel, Benjamin G. Mody, Nimesh Delibegović, Mirela Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title | Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title_full | Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title_fullStr | Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title_full_unstemmed | Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title_short | Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis |
title_sort | adipocyte-specific protein tyrosine phosphatase 1b deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289674/ https://www.ncbi.nlm.nih.gov/pubmed/22389718 http://dx.doi.org/10.1371/journal.pone.0032700 |
work_keys_str_mv | AT owencarl adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT czopekalicja adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT agouniabdelali adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT grantlouise adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT judsonrobert adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT leesemmak adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT mcilroygeorged adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT goranssonolga adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT welchandy adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT bencekendrak adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT kahnbarbarab adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT neelbenjaming adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT modynimesh adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis AT delibegovicmirela adipocytespecificproteintyrosinephosphatase1bdeletionincreaseslipogenesisadipocytecellsizeandisaminorregulatorofglucosehomeostasis |