Cargando…

A scalable and portable framework for massively parallel variable selection in genetic association studies

Summary: The deluge of data emerging from high-throughput sequencing technologies poses large analytical challenges when testing for association to disease. We introduce a scalable framework for variable selection, implemented in C++ and OpenCL, that fits regularized regression across multiple Graph...

Descripción completa

Detalles Bibliográficos
Autor principal: Chen, Gary K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289918/
https://www.ncbi.nlm.nih.gov/pubmed/22238272
http://dx.doi.org/10.1093/bioinformatics/bts015
Descripción
Sumario:Summary: The deluge of data emerging from high-throughput sequencing technologies poses large analytical challenges when testing for association to disease. We introduce a scalable framework for variable selection, implemented in C++ and OpenCL, that fits regularized regression across multiple Graphics Processing Units. Open source code and documentation can be found at a Google Code repository under the URL http://bioinformatics.oxfordjournals.org/content/early/2012/01/10/bioinformatics.bts015.abstract. Contact: gary.k.chen@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online.